
G K  - 

d DOUGLAS PAP ---c 

SATELLITE MOTION FOR A L L  INCLIN.*STIONS ~- - 

AROUND A N  OBLATE PLANET 

AUGUST 1964 

M. ECKSTEIN 
R E S E A R C H  S P E C I A L I S T  

D O U G L A S  A I R C R A F T  C O . ,  I N C .  

Y .  SHI 
R E S E A R C H  S P E C I A L I S T  

D O U G L A S  A I R C R A F T  CO. ,  I N C .  

J. KEVORKIAN 
C O N S U L T A N T  

D O U G L A S  A I R C R A F T  C O . .  I N C .  

T O  BE P R E S E N T E D  T O  T H E  I A U  S Y M P O S I U M  
A T  T H E S S A L O N I K I .  G R E E C E ,  O N  A U G U S T  17 - 2 2 .  1964 

nuuo <a- b s 

L70UGLAS -_ _..- M/SS/LE CI- SPAC€ SYST€MS D/V/S/UN 
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t ttt M. Eckstein , Y. Shitt and J. Kevorkian 

ABSTRACT 

A uniformly valid solution for the motion of a satellite around an oblate 

planet is presented. The Two Variable Expansion Procedure as earlier 

developed at Caltech was applied to obtain a solution valid for all 

inclinntions including the critical. This solution is correct to order E ,  

2.  where E is a small parameter proportional to the oblateness parameter J 

The reciprocal of the radius vector, eccentricity, perigee, inclination, 

and node of the satellite orbit are given as functions of the central angle Q 

between node and satellite. The results are based on a potential which inaludes 

the second and fourth zonal harmonics. The solution for the case of critical 

inclination is first obtained separately and then matched with the solution 

of the noncritical case to establish 8 solution uniformly valid for ali 

inclinations. 
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1. Introduct ion 

The motion of a s a t e l l i t e  around an ob la t e  planet  has received considerable 

a t t e n t i o n  i n  the  l i t e r a t u r e  a f t e r  t h e  advent of a r t i f i c i a l  s a t e l l i t e s  of the 

ear th .  

were not v a l i d  f o r  i n i t i a l  o r b i t a l  i n c l i n a t i o n s  c lose  t o  t h e  c r i t i c a l  value 

cos -1(5)-1'2= 63.h0 frw t h e  equa to r i a l  plane of symmetry. The non-validity 

of t h e  so lu t ion  at t h i s  angle exhibi ted itself by t h e  occurrence of a d i v i s o r  

which tended t o  zero at t h e  c r i t i c a l  i nc l ina t ion .  

The e a r l y  theo r i e s ,  of which Brouwer's (1959) is t h e  most comprehensive, 

Later, Hori (1960) and others  ( c f .  Garfinkel (1960). Mersman (1962). and Izsak 

(1963) using diverse  approaches, s tudied t h e  behavior of t h e  so lu t ion  near the 

c r i t i c a l  i nc l ina t ion .  

treatments of t h e  c r i t i c a l  i n c l i n a t i o n  problem is almost impossible because of 

t h e  m u l t i p l i c i t y  of notat ions,  approximatione and s t a r t i n g  points" (Mersman 

(1962), t h e r e  is general  agreement about t he  necessi ty  of studying an expansion 

i n  powers of S1I2 (where S is t h e  small paremeter measuring t h e  oblateness 

per turbat ions) .  

near t h e  c r i t i c a l  i nc l ina t ion ,  as first described by Hori, has been repeatedly 

substant ia ted.  Th i s  statement by Mersman q u i t e  c o r r e c t l y  r e f l e c t s  t he  inherent  

a lgebraic  complexity of t he  main problem and thenecessa r i ly invo lved  nature  

of i t s  solut ion.  

t h e  s i n g u l a r i t y  at the  c r i t i c a l  i nc l ina t ion  is  q u i t e  simple and w a s  recognized 

by many authors.  

i n c l i n a t i o n s  c lose  t o  t h e  c r i t i c a l  t he  equations governing t h e  slow v a r i a t i o n s  

Of t h e  apse and inc l ina t ion  angle a r e  coupled by v i r t u e  of a regrouping of 

terms which otherwise have d i f f e r e n t  orders  of magnitude. 

Though "a d i r e c t  a n a l y t i c  comparibon of t h e  var ious 

Furthermore, a t  l e a s t  t h e  q u a l i t a t i v e  behavior of t he  motion 

However, t h e  basic  mathematical problem t h a t  gives r i s e  t o  

I n  p a r t i c u l a r ,  Struble  (1961) has  pointed out t h a t  f o r  
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This phenomenon can be duplicated exactly in a particularly simple model 

equation corresponding to the forced oscillations of a system with an appropriate 

small non-linearity. The connection between non-linear oscillations and satellite 

motions with small pertunbations is, of course, well known since it was first 

proposed by Laplace in his study of the motion of the moon. Therefore, in 

order to fix ideas the proposed model equation is first studied in detail, and 

the techniques are then directly applied to the main problem. The aim of the 

present paper is to develop the solution both near and away from the critical 

inclination in asymptotic series with respect to J. 

valid for long times, but the primary goal5s the achievement of uniform 

* 

These series are uniformly 

validity for all inclination angles as well. 

The approach adopted here proceeds from the formulation proposed by Struble 

- (1960) "d (1961). It is first shown that two distinct asymptotic expansions 

(corresponding to two regimes of the initial inclination near and away from 

the critical) can be constructed and rendered uniformly valid f o r  long tines 

by the two-variable expansion procedure of Kevorkian (1962). 

demonstrated thnt each of the above generalized asymptotic expansions, depenaing 

upon the initial inclination, individually describe the motion for all times. 

In addition, the two expansions match in an overlap domain of the inclination 

parameter lying between the critical and non-critical regimes. This matching 

is in the sense of the theory of Kaplun and Lagerstrom (1957), hence the 

uniformly valid asymptotic representation of the motion follows easily. 

It is then 

Furthermore, the analytic dependence of the solution on J1'*, as first suggested. 

by Hori (1960). is Justified by the techniques or' singular perturbation theory 

and the matching process. 



The present solution includes the second and fourth zonal harmonics of the 

earth’s potential. A l i  secular ana long-period terms are included up to 

O ( , T ~ ’ ~ ) ,  while short-period terms are retained up to O(J). The results are 

exhibited ir. the form of the reciprocal redius, eccentricity, perigee, 

inclination, and node as functions of the central angle between the ascending 

node and radius vector. The equation for the time is not given here but will 

be included in a future publication. 

results with at least the work of Struble (196L) and (1962) will also be 

A detailed comparison of the present 

provided there, 
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2. Xodei Equation 

2.1 Gcncral Discussion 

in order to demonstrate the essential mathematical features of the main p r o b i e n  

e??d tne expansion procedures, the following model equation is first stuaiea in 

detail 

where E << 1. 

In the absence of the forcing function, this equation can be integrated. exactly 

and exhibits the following behavior in the phase-plane of y and dy/dt. 

Whenever the radius r = [y2 + 52]1/2 in the phase-plane takes on the critical 

values r = cos (5)-"*,, the motion reduces to simple harmonic oscillations 

with amplitude r and unit frequency. For each annular region bounded by two 

consecutive values of r the integral curves are ovals with their axes aligned 

alternately paralled either to y or to dy/dt. 

-1 
C 

c 

C '  

One would thus expect that the 

addition of the forcing term with unit frequency will cause local resonance in 

' neighborhoods of the critical amplitudes r , As will be shown later on in this 
C 

section, this will indeed be the case and w i l l  give rise to the problem of tne 

"critical amplituae". 

Using the two-variable method discussed by Cole and Kevorkian (1962), (1963), 

the following form of the asymptotic expansion is first assumed' 

* Throughout this paper the omission of the upper index on a summation symbol 
will indicate an asymptotic expansion. 
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where the slow vnr iub le  t is dcfineu 'uy 

( 2 . 3 )  t = E t  

as discusseu by Kevorkinn (19623 .  Tncn the governing equation for y is 
0 

whose general solution i: 

y (t,i;c) = n(t;c)cos[i - O(t;E)I 
0 

( 2 . 5 )  

The functions U ( ~ ; E )  and R ( ~ ; E )  in (2.5') which will be cailed "integration 

conste.nts" will be determined by requiring y, to be bounded. For the present 

case we always have the simple harmonic operator on the left-hand side of all 
A 

higher order equations. 

representation of the motion of the phase angle, we will expand the "integraticr. 

constants" u ( < ; E )  and B ( $ ; E )  in the foim: 

For simplicity of calculations and for the explicit 

From (2.1) the following equation for y can be calculated: 1 

(2.7) 

The boundedness of y1 requires 

2 d B  
0 = -(1 - 5cos a 1 I s 
dt 0 0 

6 



These equations give 

a = const. Bo = s t + bo 
0 0 

(2.9) 

wnere b is a constant depending on the initial condition. The solution for 
0 

y1 is then 
.. 

jr-(t,t;E) = 0 
1 

(2.10) 

with no loss of generality becnuse the homogeneous solution is already accounted 

for in the expansion of a and B in y * 
0' 

Mow the equation of O(c2) for y is 2 

da 2 5  
0 

a ~in8j sin (t-8) + a. [so - 5 aOSO sin 2a 
0 

(2.11) 
dt 

where 
ds 

s 1 =o= -5 sin 2a o da 0 
(2.12) 

By the boundedness requirement on y we must set 2 

aa a 
(2.i ja) sin a 

d< 
1 0  - = -  

2 
1 S 

- = - -  0 dR1 8 aoso sin 2a + - cos 8 + s 'a 
dt 2 0 2  0 1  (2.13b) 

-112 Since for s -c 0 (i.e. a = cos-l(5) 
0 0 

) 6 = bo + O ( E ) ,  we see immediately 

from (2.13a) that a, becomes unbounded for large values of t .  
expansion procedure assumed in (2.2) is not uniformly valid near the critical 

Thus, the 
A 

amplitudes. 



I n  t h i s  s i n p l e  model t h e  cause of t h e  d i f f i c u l t y  is easy t o  discern iinii rcs;i.,i:;. 

As w a s  pointed out e a r l i e r ,  whenever a = u 

System degenerates t o  simple harmonic motion w i t h  a frequency equal t o  t n a t  

Of t h e  forcing function. Therefore,  i n  sone neighborhood of  h t h e  m ? i i t u d e  

must i nc rease  appreciably before  the non-linear term comes i n t o  play anu 

destroys t h e  resonance of the forcing funct ion.  h e  t o  t h i s  e f f e c t  of l o c a l  

resonance t h e  forcing funct ion,  which wouia o tne rv i sc  be of order  E , now 

t a k e s  on a more importan: r o l e .  'This f a c t  i s  exii ioitea mathematically i n  

equations ( 2 . 8 ) .  When s i s  smali  one cannot neglect  t n e  hil;ner order  fo rc ing  

funct ion ir, soivini; f o r  B and a s ince  i n  t h i s  case t h e  ri;;ht-harra sicies of 

(2.8) are exclusively composed of small terms. 

ou t  by S t rub le  ( 1 9 6 1 )  i n  connection w i t h  t h e  main problem. 

- l / 2  = cos-'( 5 )  t h e  non-linear 
C 

c 

2 

0 

0 C' 

T h i s  f a c t  w a s  f irst  pointed 

I n  view of  t h i s ,  w e  a n t i c i p a t e  t h e  importance of t h e  f0rcir.g furicticn and 

introduce it immediately i n  t h e  eqJat ions of order  i. T h i s  means e?uations 

(2.8) f o r  a and 6 now bec'ome 

da E a  - = - s i n  6 2 d t  
(2.14) - d6 = -(1 - 5cos 2 a) + - E COS 6 

2 a i  

e 

The terms of  o rde r  E i n  (2.14). which are exclusively t h e  con t r ibu t ions  of t h e  

right-hand side of (2.1), w i l l  r a d i c a l l y  a l t e r  t h e  behavior of a and 13 near t h e  

c r i t i c a l  amplitudes. 

Equations (2 .14)  a r e  Hamiltonian, hence along an i n t e g r a l  curve 
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With the aid of (2.15). the integral curves in the a,3 plane can be easiiy 

calculiited. 

and cos a = cos a I z ( l / 5  7 ~ / 1 0 ) ~ / ~ * .  

pattern of centers and saddle-points with solution curves as shown qualitatively 

in Figure 1. 

The singuiar points are iocated at 8 = B S  = nr, n = 0, f i, 2 2 ,  . . 
These points form an alternating 

S 

We observe three possible types of notion if we consider the integral curves 

in vertical strips with a width of order c1l2 centered about any of the critical 

amplitudes. * 

The integral curves which pass through two adJacent saddle-points for a given 

value of a form the boundaries of oval regions with a width also of O ( E  

inside which both il and B undergo bounded oscillations. For example the 

motion in the neighborhood of the point 6 = 0 and a = a = cos 

has the form 

112) 
6 

-1 (115 - c/10)1’2 
S 

‘ 
112 - 

(2.16) a = a S + ~ ~ c ~ / ~  cos [ (2Eas) t + c2] 

(2.17) 

where C and C hre small constants depending on initial conditions which 

allow us to linearize equations (2.14). 
1 2 

The separatrix forming the above boundary corresponds to motion where a and B 

approach the value at the saddle-point asymptotically as -c m. In fact, by 

use of (2.15) it is easy to show that the separatrix around the point 8 = 0 

it The upper or lower signs in the radical are to be taken when 8 is an even 
or odd multiple of n respectively. 
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and a = cos-l(1/5 - ~ / l O ) l / ~  for 0 < as 

distance (~/2)l/‘  COO-^(^)'^/^ + O ( s )  from the singular point. 

a/2, intersects the a axis at a s 

Finally, the 

motion just outside the oscillatory regions is characterized by the fact that 

a undergoes bounded oscillations, while 6 has a secular motion superirpcnen 

on its oscillations. In all three of the above motions the characteristic 

frequency is O ( E  3’2) in the natural time variable whereas the amplitudes of 

oscillation are O( c1l2) (cf. equations (2.16) and (2.17)). This immediately 

suggests that the slow time scale appropriate for motion near the critical 

amplitudes is t = c3l2t, and that one must seek an expansion for y in powers 

of E . 1/2 

As for the motion away fiom the critical amplitudes, we-note from.(2.8) and 

(2.13) that a oscillates with amplitude ana frequency of order E, and that the 

oscillatory as well as secular components of 6 behave similarly. 

The above intuitive construction will next be analyzed systematically by the 

use of two different expansions and their roles established in terms of all 

possible initial conditions. 

2.2 Outer expansion 

In order to account for the most general form of initial conditions, we 

represent the motion away from the critical amplitude by an expansion in gowers 

of ell2, called the outer expansion: 

i / 2  (2.18) y(t;c) = 1 Yi/2(t,t;E) 
i=o 

10 



As before the leading term of (2.18) is 

(2.19) yo(t,i;e) = a(<;c) cos [t - ~ ( t ; c ) ~  

where we set 

It is then easy to show that ylI2 = y1 = y3,2 = 0 after having defined the 

a i/2s BiI2 by the following boundednese requirements: 

0 daO (2.22) - =  
d t  

sin $ 
1 OO 

da 

d< 
- = -  

2 (2.26) 

0 " 2 6 1 - aoso sin 2ao + cos 0 + s f a  + - d81 1 2 
2 so 0 I 2 a1/2 

- = -  (2.27) 
a); 

where 

2 
so 

daO 

s " = - = -10 COS 2a0 
0 2 

Note that trigonometric functions with 8 as argument are not expanded to avoid 

trivial non-uniformities as the expansion of 8 in (2.21) need not involve 

bounded functions. It is only the phase velocity d@/di  that must be bounded. 

11 



The solutions of the above equations are: 

a = const. = a 
0 0 

(2.28) 

and 

(2.30 5/2 a1,2 = const. = 

ana 

CI 2 

1 + ...j (cos B - cos b )  + a 6 0  ' I 2  ) s 'a 112 G 112 + E (  a1 2 s 0  I1 - E 

- G  - - -  
6 5 

(2.32) 
0 0 

and equation (2.27) reduces to 

5 'a 112 0 1/2 s ' u  1 0 0  aB1 1 2 5 aoso sin 2a + -cos 0 - - [l - E 
25 5 
0 0 

0 2  - -  - - s  
2 0 't (2.33) 

at 

s " 2 
2 

0 + ... ](cos 13 - cos b) + sO'a + - 
1 2 a1/2 - E (  

0 .  - 
if the initial conditions are given as 

112 (2.34) 3 = b = bo + E blI2 + Ebl + ... 

at t = 0. 

Equation (2.32) for a1 efiibits the non-uniformity of the expansion near s 

Note that a would be identically zero if the initial amplitude did not contain 

a term proportional to E , 

= 0 .  
0 

1/2 
1/2 
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2.3 Inner expansion 

As mentioned previously, the outer expansion fails to be valid as s + 0 .  

We now seek a solution which is valid and does not becnme unbOuFaL?CI at the 

critical amplitudes. This expansion will be called the "inner expansion". 

We let (cf. discussion after Fig. 1) 

0 

und assume the following expansion for y 

where R new slow variable 

- 3/2t - 112  ; ( 2 . 3 7 )  t = c  - E  

has been chosen. The equation for 
7 Y  
L - -  a Yo - * I O  

(2.38) 2 + y o  at 

whose general solution can be writ 

* 
YO 

en 

is again 

n the form: 

* *, 
(2.39) yo (t,T;E) = a*(T ;E)  cos [t - ~3 (t;E)] 

*, * -  
We also expand the slowly varying functions a ( t ; c )  and 6 (t;c) in the following 

form in order to account for the homogeneous solutions of all higher orders. 

* -  iI2 I(- 

(2.40) a (tic) = 1 'ail2 ( t ) E  
i=O 

* - i/2 * -  
6 (tic) = BiI2 (t)E 

i=O 

13 



Substitution of the above expansions into (2.1) and the requirement that the 

yiI2 be bounded gives the following ordinary differential equations for the 
* 
* * 

ai/2 and %/2 : 

dao 
(2.41) - 

* 
0 - =  

dt 

* 
dSO * 

so O1/2 
- =  - 
dt 

* a 
sin 8 1/2 -=:A 

da 

2 (2.42a) - 
dt 

* 
* 8 I1 2 1  0 

(2.42b) -- d8i/2 - - s 0 1  'a + *a1/:) + 5 cos 8 
dt 

Ill * * *  * 
+ s "a - o 3/2 o 1/2 a1 + -"s ('1/2 ( 2.43b 1 

dt 

, .  with the additional results 'that 

3 * - -  
2 5 ao * s 0 sin 2a 0 

* 
and that only in y 5/2 

We note that equations (2.42) are precisely the equations one would obtain in 

the inner limit from (2.14). 

for the aiI2 

do we have higher harmonics in the fast variable. 

Equations. (2.41-2.43) can be solved successively 
* 

and the results are summarized below. 

* * 
a = const. = a 

0 0 
(2.45a) 

* 112 1 - * * -  = KO + - [F12 + K2(cos 6 - cos b 11 
s '  (2.45b) O1/2 
0 

14 



where 

and the initial conditions 

have been imposed. 

0 
so defined With the a 

These details will not be 

a and 6 have already been 

i/2 

*I2 
- 2  2 K~ = ($ + sota1,2 

at T =  0 

6* = b* 

- * 
K 2 = - a  0 0  s '  

0 
reduces to quadratures. 

i/2 
;he solution for the 6 

:arried out here as the qualitative behavior of both 

liscussed. 
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2.4 Matching of solutions and composite expansion 

In the standard singular perturbation problem in which two limit process 

expansions can be derived in their respective domains, either one or both 

of these expansions is defined incompletely prior to the matching (cf. Kaplun 

and Lagerstrom (1957)). 

solution would depend upon the values taken on by the outer solution in the 

For example, the initial conditions for the inner 

inner region if the motion spans both regimes (cf. Lagerstrom and Kevorkian 

(1963)). In this case, the matching will define the motion in the inner region 

and the behavior of the two limit-process expansions in their common overlap 

domain will provide the basis for deriving a composite expansion which is 

uniformly valid everywhere. 

In the present example, as well as in the main problem, the motion depending 

upon the initial condition on a lies for all times in either the outer or 

inner regions. 

expansion does not vary in order of magnitude with time. 

Furthermqre, the parameter which establishes the appropriate 

The purpose of 

matching is then two-fold. 

will prove the existence of a common overlap domain and rule out the possibility 

of an even third limit-process expansion for some value of u such that 

s = O(E’), 1 u 1/2. Secondly, the matching will provide the necessary 

information for obtaining a representation of the motion for all values of 

First, the direct matching of the two expansions 

0 

s in the above order interval once the behaviors at the end-points of this 

order interval have been calculated. General principles of matching are 

discussed by Kaplun and Lagerstrom (1957). For the present examples, as well 

as for the main problem, it is sufficient to show that the inner solution for 

large values of agrees with the inner limit of the outer expansion. In 

0 

0 

17 
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this event the derivation of a composite expansion which is uniformly valiu 

for all s in the order interval ord E 1/2 2 ord so 2 ord 1 becomes particularly 
0 

StraightfOrWard. 

* * 
The matching between a and a 

outer variables and expand for Fo + 0 ,  we obtain 

is very simple. If we rewrite a in terms of 

* -  * * s '  * .  * 
(COE B - COS b ) + - 1 E312 (+a - l) a1/2 (cos 6 - cos b*) E a0 - -- 

0 
0 

2 so 
* 

0 * * 0 2 *  E2 so' * 8 '  

2 so 0 
- - (-a - 1) [+all2 (cos B - cos b ) + $5 (cos b 

9 S 
0 0 

From the outer expansion we have 

'2 2 
1/2 So'al/2 + so + . . . I  (cos B - cos b) + O ( E  5/21 2 E 1  - E 

EaO - -  
S 
0 S 

290 0 

By comparing equations (2.48) and (2.49) we see that the inner expansion contains 

the outer expansion explicitly to order E . Note that in the overlap domain 
il 2 we have a = a In fact, all terms in the outer expansion to order E 

2 

i/2 i/2 * 1/2 0 it 
alI2 , The outer expansion of a is entirely of 1 are contained in a + E 

higher order. 
0 

L 

Thus, the compoeite expansion which is uniformly valid to O ( E )  

everywhere is: 

* 0 

1 a = a + r1/2al12 + Ea 
c o  (2.50) 

18 
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* 
In this. matching, we have assumed that both B and B are matched. ='his W i L  

be shown in the subsequent discussion. For simplicity, we will discuss tne 

matchine between d6/& and d0 /dT instead. * 

To summarize, we have already obtained 

3/21 s I' 

2, + O ( E  
+ - 1 cos B + sofa1 + 0 
2 . 2 a1/2 

and 

We note that the inner expansion of ('2.52) for d6*/dT contains a l l  the terms 

that appear in the outer expansion (2.51) with the exception of the two terms 

- Eao2So sin 2a and - E S  '. This is consistent, because when the above 

terms are expressed in terms of the inner parameter s 

c3I2 and 

dS /dt and dS,,,/d; respectively. The first term does appear in the 

expression (2.43b) for dB 

dB3,2 /dT were evaluated. 

1 
0 . 2 . 0  - 

they become of order 
0' 

respectively. Thus, they should appear in the expressions for 
* -  
1 * -  

/dt and one would recover the second term if 1 * 

Conversely, many terms in the inner expansion' e.g. s 0 1  'a * and s 0 "(a,l,*)2/2, 

are of orders higher than we considered in the outer expansion and will a?>?at 

in the corresponding higher order terms. 

to the present order we can easily derive the following composite expansion 

for dD /dT which is uniformly valid to order c 2  for a l l  so. 

Having carried out the calculations 

C 
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(2.53) 
s " * 112-  " 1  * o  dBc - - + E ~ s ~ l a  1 2  + - COS B + 2 (all2 

dt = so + solall2 

2- * c 2 - 2  
+ - 2 so - 5 c(ao*) so sin 2a 

0 

In deriving (2.53) we have used the customary construction of adding the inner 

nd outer representations for ds/dt ana subtracting those terms which are 

3mmon to both expmsions in the intermediate region. These terms are the 

two higher order terms appearing at the end of (2.53). 

c1I2 the inner expansion ds /dt is itself uniformly valcd for all so. It 

is only in deriving an expression valid to orders higher than t1I2 that one 

Thus, to order 
* -  

needs consideration of terms contributed by the outer expansion. 

Finally, the solution of (2.1) for y which is uniforrnly'valid to O ( E )  for 

all so is 

The behavior of the amplitude and phase t o  O ( 6  ' I2) was discussed earlier in 

connection with (2.14). The higher order terms will not alter the generai 

qualitative nature of the solution. 

of the expansions for a and B was carried out here to serve as a guideline for 

the study of the main problem for which there is no a priori knowledge of the 

particular higher order terms which cause local resonance. 

rely on a more formal construction analagous to the process used in sections 

The detailed and systematic development 

Hence one must 

2.2-2.4 
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. -  

3 .  The :.lain Problem 

Once a s u i t a b l e  choice of va r i ab le s  i s  made, t h e  not ion  of a s a t e l l i t e  around. 

an o b l a t e  p iane t  reduces i n  p r i n c i p l e  t o  t h e  so lu t ion  of o problem i n  non-linear 

o s c i l l a t i o n s  rinulogous t o  the  nodel d i scussea  i n  Sec t ion  2 .  Of course,  i n s t eau  

of t h e  two siowiy varying func t ions  a ana ir, we now have s i x  slowly varying 

o r b i t a i  elements, However, it w i l l  be shown t n a t  t h e  main probiem hinges on 

so lv ing  t h e  coupled equations for t h e  i n c l i n a t i o n  and apse which w i l l  be t h e  

analogues of a and R, and t h a t  t h e  remainder of t h e  elements w i l l  then be 

given by quadratures.  

3.1 Formulation of t h e  problem, coordinate system 
. .  

Consider an i n e r t i a l  frame with o r i z i n  a t  t h e  cen te r  of  an ob la t e  planet, 

having a r ad ius  R i n  t h e  equator ia l  plane of symmetry. We normalize d is tances  

by t h e  r ad ius  R and t h e  time by ( R  / C Z M ) ~ ’ ~ ,  where C i s  t h e  un ive r sa l  g r a v i t a t i o n a l  

cons tan t  and M is t h e  mass of t h e  p lane t .  

3 

The dimensionless equation of motion 

f o r  a s a t e l l i t e  is then 

-+ 
where x is t h e  dimensionless d i s t ance  vec tor  from t h e  o r i g i n  and t h e  p o t e n t i a l  

U has  t h e  following form in sphe r i ca l  po lar  coordinates with respec t  t o  t h e  

polar a x i s  of symmetry: 

U = k + E ( 1 - 3 c o s e )  2 + -  C E  (35 COS 4 e - 30 COS 2 e + 3 )  + O ( C  3 1 
2 

3 5r5 ( 3 . 2 )  r 
3r  

where 8 is t h e  po la r  angle. 
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It has been assumed that the planet is an ellipsoid of revolution anu for 

the earth the constants E ana c are approximately (cf. Jeffries (1959) and 

Shi (1963) 1 

E = J = 1.623 x c = 4/7 

In the conventional spherical polar coordinates: 

(3.3a) 

(3.3b) 

(3.3c) z = r cos e 

where 

x = r cos $ sin 8 

y = r sin J, sin' e 

Equation (3.1) for any potential U has the following component form: 

, 
2 dJ, a U  r (x) - r sin e (--) = - (3.4c) dt ar 

2 de 2 d r  

dt2 
- -  

Since the satellite can be considered to move in an instantaneous plane defined 

by the distance and velocity vectors, one may also define the motion by the 

following variables proposed by Struble (1960) and (1961) (cf. Fig. 2 for the 

geometry). 
i = angle between instantaneous orbital and equatorial planes 

h-2 = angle in the equatorial plane between some fixed direction, 

say x pointing towards the vernal equinox, and the ascendins 

node 

r = the radius 

$ = angle between the ascending node and the distance vector. 
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St rub le  (1360) has shown t h a t  equations ( 3 . 4 )  transform t o  t h e  following 

f i f th -order  system a f t e r  elimination of t h e  time." 

a u  
- =  dn a +  

2 3 

- 
COS Q a u l  pu + cos i cos 0 

cos i 2 .  [g + t a n  i s i n  8 d v  

d4 
(3.5a)  

p s i n  i sin 6 

(3.5c) 

3 ad cos $ a u ]  

p2u2 s i n  i s i n  e + cos i cos e [- + t a n  i ELL s i n  e GI a $  

- cos  i cost -  [- + t a n  i 
dR a d  s i n  0 a $  
" 
- =  

2 4 a u  
a o  

2 3 av COS Q au l  s i n  i cos i c o s 4  [- + t a n  i d i  a d  s i n  6 J(I 

'4 p2u2 s i n  i s i n  e + cos i cos o [- + t a n  i 
- =  - 

2 4 a u  
g j  a e  s i n  0 a $  

where p i s  the component'of angular momentum along t h e  polar  a x i s  and i s  

defined by 

2 &  
d t  (3.5e) p = r2 s i n  

I n  equation ( 3.5d) and 0 are defined by 

2 3 9 = pu + COS i cos e au 
dt cos i p s i n  i s i n  8 

+. t a n  i 
2 s i n  av (3.5g) 

* Note t h a t  S t rub le  (1960) def ines  t h e  node i n  t h e  oppos i te  sense. 
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2 I f  we now use (3.2)  f o r  U and r e t a i n  terms up t o  O ( c  ) only,  (3.5) s impl i fy  t o  

3 2 2 an - 2Fu cos i cos o [1-2ccu2(7cos e - 3 ) l  

s i n  i + 2cu cos i cos e [l - 2ccu (7cos 8 - 3 )  1 4 2 2 2 
- a  

2 2  (3.6b) 
p 

2 2 2 d i  
dg 

- 2cu s i n  i c0s3i cos QI cos 8 [l - 2ccu (7cOs G - 3 )  I - =  
2 4 .  2 2 2 p2 s i n  i + ~ E U  cos 1 COB 9 [1 - 2ccu ( 7 ~ 0 s  8 - 311 

( 3 . 6 ~ )  

aL' 
a v  where 2 i s  given by (3.5g) w i t h  - = 0. 

According t o  ( 3 . 6 ~ ~ )  p is a cons tan t ,  a consequence of t h e  independence of U 

on 6 .  Furthermore, equation (3.6b) f o r  t h e  node i s  uncoupled from ( 3 . 6 ~ )  and 

(3.6d) and can hence be solved independently once u and i have been determined. 

Making use of t h e  i d e n t i t i e s  (3.5g) and (3.5h) and r e t a in ing  terms up t o  

O ( E  ) i n  ( 3 . 6 ~ )  and (3.6d) y i e lds :  2 

d i  u 3  2 3  4 2 - = - c- cos i s i n  i s i n  24 + 2s2 !?- cos i s i n  i [L cos i s i n  6 2 2 
F P 

2 
P d4 

(3.78) 

2 2 3 - 3cu + 7cu s i n  i s i n  4 1  sin 24 + O ( c  ) 
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2 

P 
- -  

2 

2 
+ E  

du 2 4  2 u  2 2  2 2 U 6 2 
(GI cos i sin 4 + - COB i(l - 3sin i sin $1 - 4 cos i sin $ 1  2 

P P 

2 2 
4 2 3cos i 2 4 

cos i u3 sin 6 i- sin 4 - 2uc(3 - 7 sin i sin .$I)} [ -  4 - 
P P 

6 2 u3 du 2 sin2i coa i sin $ sin20 - 2c -- i- 3sin i cos2i 2 .  

2 d4 
- o % $  

P P 

4 2 2 4 4 2 2 
+ 7 sin i cos i sin 4 + 6cos i - 28cos i sin i sin 4 }  sin20 

u2 du 2 4  2 2 2 
p2 d@ 

- 12c - (-1 cos i sin 4 ( 3  - 7sin i sin $)  

6 2 u du 2 8  4 2 

4 d0 
U + 2 -- du COS i ( ~ C O S  i - 1) sin24 sin24 + 4 -r; (-) cos i sin @ 

d4 P , P  

U 4 2  4 4 2 2 
+ c - 2 cos i {35sin i sin 4 - 30sin i sin 4 + 3) 

P 

U 3 6  2 ' 2  2 2 4 2 - 4 T cos i sin 4 (1 - 3sin i sin $ )  + 4 cos6i sin 4 {+ cos i sin 0 
2 

P P P 

- 2cu (3 - 'Isin 2 i sin 2 4 ) ) l  + O ( c  3 
* 

It is mentioned in passing that Struble (1961) chose a modified variable 

analogous to in order to eliminate certain non-uniformities in the solution, 

With the present approach this is unnecessary, since all the required scale 

changes are automatically accounted for by the two-variable procedure. 
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3.2 Outer expansion 

The main problem to which we have previously referred is the solution of 

equations (3.7a) and (3.7b). 2 Since cos i/p2 is constant to order unity, we 

see from (3.7b) that this problem reduces to solving the motion of an oscillator 

with small non-linearities and a weak coupling because i is constant to order 

unity. The sonewhat iencthy nature of the perturbation terns in ( 3 . 7 b )  Goes 

not alter the fact that the system in question is qualitatively analogous to 

the model equation studied irr Section 2. 

by assuming the following expansions for i and u: 

We therefore proceed as in Section 2.2 

where G, analogous to the slow time variable, is defined by 
(3.8~) 0 = Et+ 

Substitution of (3.0) into (3.7) gives to order unity 

- 

a io 
- =  0 
aQ (3.94 

2 cos i 2 

a@ 'P 

0 
a u  - 2 + u o = -  0 

(3.9b) 2 

whose general solution is 
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In (3.10b) the two "constants of integration" have been expressed in terms of 

the conventional Keplerian elements. 

e = eccentricity 

w = apse angle measured in the counterclockwise sense from the 

ascending node to perigee in the instantaneous orbital plane, 

As before we assume i e and w have the following expressions 
0' 

in order to account for ;he homogeneous solutions of the higher order t e h s  

in i and u. It is easy to see that since terqs of O ( E  'I2) are absent in ( 3 . 7 ) ,  

i1,2 = ulI2 = 0. 

(3.12a) - = - - % cos i eini sin2$[1 - e cos($ - w ) ]  

The following equations for i and u can then be derived. 1 1 

5 ail di 
00 

00 00 0 a i  p . 

2 2eo 2 e 0 6  
2 

1 - cos i - -g cos i (1 - 5cos i ) ]  cos($ - w )  
a u  

a $  P 6 P 
- 

00 00 00 
+ u1 - [- - - 2 ( 3 . m )  

e 
1 6 2 0 

2 %eo 

O0 d8 
+ 5 cos i - sin($ - w )  - -g cos i sin i 

00 00 
[cos24 + 3 cos(3$ - w ) ]  

P P 
2 
0 

2 e  e 6 
1 2 O + - COS2($ - w)l + .6 ( -  F +  + c o s  i )[1 + 7 

cos i 

P 

00 
2 00 

2 e 6 cos i 

2P 

2 0 00 + -7 (3 - 7cos i )[(1 + --5-)cos2$ + eocos(3$ - W )  
00 
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e 

00 2 

2 
0 COS(3$ - w ) j  

0. 0 2 8 e 2 e 
+ q-- cos(44 - 2w) + 4 C O S ~ W ]  - cos i [l - cos24 - - 

P 

e e 6 
0 00 2 0 0 

e cos i - 2 . 7  (1 - 3cos ioo) [ -  cos(34 - w )  - 2 cos(44 - 2 w )  + 2 C O S ~ W ]  

P 
2 8  e cos i 

2 6  
1 0 00 i 

2 [l -  COS^(^ - W )  - cos24 + -  COS(^^ - 2 ~ )  + 2 C O S ~ W ]  - -  
P 

I n  order  t h a t  i and u be bounded we must s e t  1 1 

Note t h e  s i m i l a r i t y  of (>.13a) and ( 3 . 1 3 ~ )  t o  (2.22) and (2.23) e s t ab l i sh ing  

t h e  analogy between a and B of t h e  model equation with i and w respec t ive ly  

f o r  t h e  main problem 

Thus, t h e  el-ements t o  f i r s t  o rder  become 

i = Jo = const .  w = s $ + w o o  
0 0  

e = const.  
0 00 (3.14) 

where woo is a cons tan t  depending upon t h e  in i t . i a1  condi t ions.  

Equations (3.12) can now be solved t o  give 

2 e 6 cos i 

2P 

2 
00 [- 1 + 3cos i - 9 1  - 5cos2ioo) 6 00 

u =  1 (3.15b) 
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2 2 e e 6 eo2 s i n 2 i  )cos2+ - - + 2 1 2  0 0 
+ 4. (1 - 3COS io,) coe2w - (7 s i n  i 

00 3 00 

2 e 

12  

2 
0 ( 5 - l l c o s  io,) coe(3$ - W )  

2 e 
+ + (1 - 9coe io,)" COS2(+ - w )  - - 

2 
2 e 

12  (1 - 3COS io,)  COB(^^ - 2w)] 0 - -  
To O(c3I2) a l l  t h e  forcing terms on the  right-hand s ides  of t h e  equations for 

u312 must be removed f o r  boundedness, giving 

dnS 
n = 1, 2, ... =O 

'n n' 
dioo 

. which implies  t h a t  

- 
elI2 = c o n s - m t  - 1/25 + w1/20 

- - Jl12 = conetant 0112 (3.17) i 

where w i s  a constant  depending on t h e  i n i t i a l  condition. 1/20 

The requirement t h e t  i and u2 be bounded provides t h e  following equations f o r  2 * 
iol, 1, and el: 

de. 
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The solutions of (3.18) subject to the irutial conditions 

(3.19) w = w  en = rln 'on Jn 
at t = are 

= j, + - c2 (cos2w - coe2w) 
iol 2s0 

(3.20.~) 

B2 e = + - (cos2w - coe2w) ( 3 2Ob) 1 1 2s0 

The non-uniformities of the outer solution near So = 0 are exhibited above and 

are a consequence of the non-validity of the expansions assumed in (3.8) near 

the critical inclination. 

3.3 Inner expansion 

As shown in Section 2, the expansion procedure for inc1:nations close to the 

critical value should be of the form 

~ ~~ 

* Henceforth all constants not defined in the text will be found in the 
Appendix with no additional reference. 
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and we a r e  i n t e r e s t e d  i n  the case where 

So = c ~ ' % ~ ,  with = O(1) 0 
(3.21d) 

Upon s u b s t i t u t i o n  of (3.21) i n t o  (3.7) w e  ob ta in  t h e  following equat ions f o r  

t h e  lead ing  terms: 

2 *  ,, cos i 2 "  
0 + u  = a uo - 

0 2 ( 3.22a) 
? 

whose genera l  so lu t ion  i s  of  t h e  form: 

We a l s o  expand t h e  elements of t h e  i n n e r  so lu t ion  i n  t h e  form: 

Since t h e  homogeneous so lu t ion  t o  O ( c  l j 2 )  is  nlready accounted fo r  by t h e  

expansion of t h e  elements,  w e  f i n d  u 

following equat ions f o r  t h e  terms of o ( c ) .  

* * 
= i  = 0 and can cierive t h e  

112 112 
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* 
e * 0 c) 

2 "  
1 * sin"i [cos24 + --.. C O S (  30 - w 1 * 

(3-25a) - + %  . ; -TCosi 00 00 3 
a u1 
w2 P 

0 COS2(4 - w 11 ' 6  2 

+ eo cos(34 - w 

*2 * 6 "  e *2 e cos i 

P 

cos i 

P 

1 2 *  
00 ( -  5 + 5 cos ioo )[I + 

+ ,6 00 ( 3  - 7cos 2 *  ioo )[(1 + F)COS~$ 0 

+ - 
"2 

e * * 6 *  

"2 "2 
e 0 * e  0 * 2  0 "  + 4 cos(44 - 2w ) + 4 0 s 2 w  ] - -g cos i [l - cos24 00 

P 

* * * 6 *  
e cos i 2 *  e 0 * 0 O0 (1 - 3cos i ) [ -  cos(34 - w - - cOS(30 - W 11 - 6 00 

2P 2 

* 1 * 1  - cos20 + 5 C O S ( 4 0  - 2w ) + 5 cos2w I 

There are no terms proportional t o  sin Q or COB Q in (3.25a) and no terms 

which depend on 7 in (3,25b),so (3.25) C 8 n  5e solved directly to yield 
* 

* * Y e  0 * I,, c 0 s 5 i  * sin i [cos24 + eo cos(4  + w ) + 3 COs(34 - w * ) l  
( 3 .264  i l = -  00 00 

2P 

*2 *2 e 
e 0 2 * 1 2 *  0 - - 

00 00 3 + 4 (1 - 3cos i *) cos2w - (7 sin i 
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a * 
JO 

i = constant = 
00 

(3.28) 

2 *  * e 
0 * 

+ 6 eo*2 s in2i  00 cos2$ + -g- (1 - gcos ioo ) cos2(4 - w ) 

* e  0 2 *  *)  cos(3$ - w - - (1 - 3cos i - - ( 5  - l l c o s  i cos(4+ - 2w*)1 2 e 
0 

12 00 12 00 

Since we are only interested i n  obtaining a solution correct t o  O ( s ) ,  we 

only give t h e  boundedness conditions fo r  t h e  higher order terms. 

* * 
t o  be bounded gives 

* * 312 
Requiring u and i 

(3.27a) - - = 0 = o  ( 3 . 2 7 ~  (3.27b) - 
and t h i s  implies 

a 
3/2 

&o - * 
so + sli0112 

- =  deO dioo 

d$ 

* a 

qO 
e 5 constant = 
0 

a .  * 
The boundedness of u2 and i2 r'equires 

I 

* d w  
- = -  * I  + sliol* + + A cos2w 

* * 
2 

112 1 ( i  - 2 2 0112 ( 3 . 2 9 ~ )  
d4 

* * 
and f i n a l l y  i n  order t o  make u 512 and i 5/2 bounded w e  must set 

* 
* * w * 

* )  s i n  2w (c21 i01/2 + c22 e1/2 
01 c l i  

- =  ( 3.30a) - 
d4 

* * 4 *  
2 de. * * * e  cos i 

- =  I - +- go ,-(l - 3cos i "11 s i n  2w* 
00 P 

( 3.30b) - [ % l * i O 1 / 2  * B22 e112 
d+ 
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3.4 Solution of the inner equations 

From equations (3.27~ and (3.2%) we obtain 
* * * 

C2 sin 2 w  dio112 - - 
(3.31) * - * 

so + sli01/2 dw 
0 

If the initial condition6 are given a8 

* *  * * 
ion = Jn (3.32) w ‘ W  

at t = T, equation (3.31) has the solution 

* * 
e = q n  n 

which upon substitution into (3.27~) gives 

34 

By use of equation (3.34) and equation (3.29b) we now find 

* * 112 n B  = 2 (yo - cO82W + E1/2 
(3.35) e1/2 *, 

I 

Similarly, from equation ( 3.30a) we calculate 

* 
cos2u + I1 

Equation (3.30b) can next be integrated to 

Y * *  



The solution of the apsidal motion will be considered in Section 3.6. 

3.5 Matching ana composite expansions 

The problem of matching is essentially the same as the case discussed in 

Section 2 for the model equation, 

domain, the initial conditione are the same for both inner and outer expansions; 

It must be remembered that in the overlap 

thus 

One can then calculate 

in the inner and outer 

* - - - Joe - Jo * 

the following 

expansions: 

1 2  - s  2 0  

4 s cos ioo 
- A2 - f- (1 

* 
P A2 - ( 3  39b) 

* * 
e = e  o' Qn = rln, w* = w - * 

Jn - Jn' 0 

relations between the constants appearing 

2 - 3coe io,) 
,. 1 s cos '1 - 0 00 ( 3.33c 1 B ~ *  - a2 - r eo '7 (1 - 3cosLi ) 
00 P 

- * 
c2 - c2 !3.33d) 

* 
'The matching between e ond e 

expansion of e 

can easily be realized by finding the outer 
* Y 

+ E 1/2elj2* + -Ee . This is simply 
0 

Y 

(cos2w * 1/2 * B2 * 
- - E -  

0 
2s 

* 
w 2  + Ee, = q0 + -E 

* 1/2, * 
1/2 -L 

e + E  
0 

(3.40) 
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The last term of G ( E )  in equation (3.40) arises from the outer expansion of 
* * 1’2e * aillost contain every term in the outer expansion 

112 ce . Thus, e + E 
0 * 

and the outer expansion of €6 is mostly of hif;her order. 1 

By comparing equation (3.LO) with the equation (3.20b), we note that in aadition 

to matching directly, the inner expansion contains the outer. It then follows 

that the composite expansion for e which is uniformly valid to O ( E )  fo r  a i l  i 

is 

* 
1 + ce * 1/2, * 

1/2 
e = e  + e  c o  (3.411 

* 
The matching between i and i proceeds in a similar way. The outer expansion 

* 
is * 1/2i 

Of 00 + 01/2 * 
* * 1/2; * c 2 * 3 / 2 \  

+ E - (cos2w - cos2w) + 3 ( E  * -1/2i - 
2s 
0 

0112 - Jo + 112 i + L  
00 . (3,.42) 

Comparison of equation (3.42) with equation (3.20a) snows that the inner 

expansion again contains the outer with the additional result that the outer 

expansion of i is O(E~/~). Thus, the composite expansion f o r  i is 
* 

01 0 

* y i/2 * * 
01 + ci 01/2 i = i  + E  i 

oc 00 
(3.43) 

* 
The above statements f o r  e and i hold provided that w and w 

this will be considered next. 

are matched, 

From equations (3.13c), (3.161, ana (3.180) * we have 
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* 

# 
+ A2 cos2w*] + O ( E )  

* 
contains i Use According to equation (3.42) the outer expansion of i 

0112 * 01' 
of this result leads to the following outer expansion for dw : 

Comparing equations ( 3 . 4 6 )  with ( 3 . 4 4 )  we note that they are matched in any 

overlap domain S = O(E')  with 0 < p < - 1 because those terms not contained 
0 2 * 

in the outer expaneion of dw /dT have S 

obviously s m a l l  in the overlap domain. 

of the apse is therefore 

as a factor (cf. Eq. 3.39) and are 
0 

The composite expansion for tne motion 

dwc - * * 
1 + sliol* + A. 

+ 1 A s  (i 
2 2 01/2 ( 3 . 4 7 )  - = So + SliOll2 

d0 

+A cos2wC] + O( e )  2 

uniformly to order for all inclinations. 

From the assumed forms for u and i it is easily seen that the uniformly v d i a  

expansions to O ( E )  for all incalinations for tnese variables are 

2 

2 

cos i 

P 

oc [1 + eccos($ - wC)1 + s1/2u1,2 + Eu 1 u =  
C 

(3.48a) 

i = i  + c  l / Z i  + Ei 
c oc 112 1 (3 .48b) 
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ana i, oc' c C 0' 112' 5' 5 1 2  .I. 
vnere i e nnd w are used instead of i e and w in u 

in ecuations (3.LOn) ana. (3.4Ob) and w can be obtained by integrating equa%ion 
C 

(3.47).  

The dominant behavior of the apsidal motion is described by the ieading term. 

We have from ( 3 . 3 4 )  

- -  
+ 2 K  sin 2 w * ) -112 dw * + O ( c  112) 1 (3.49) W = ( K ~  - IC1, 

and consider only the leading term we obtain 

(3.51) 

* 
For the earth's potential the quantity I( 

inclination. 

is positive near the critical 1 

Thus the square root appearing in the above expression is reai 

only if 

V - A > O ,  sin 2 * > A  w 

~~~ ~ -~ ~~~ ~ 

* Because c = 417 for the earth's potential. It is interesting to note that 
for Vinti's (1959) potential c = 5/18 (cf. Shi (1963))  which impiirs  K 

for the motion at the critical inclination. 
= 0 1 
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iiow we have to distinguish the following three cases: 

Case 1 - - 
- K  < K  C K  or O < A < i  l o 1  (3.53) 

In this case (3.50) becomes an elliptic integral of t h e  first kina. 

where the amplitude x1 is 

K + I C  1 0 2 "  tan w - ij (3.54b) x1 = t tan-' [ - 
K1 - 

and the modulus is 

* 
Using elliptic functions 'we may express w explicitly as 

1' 
where the modulus of tn is k 

0 

The interpretation of this result is that the perigee performs n penauim 
* -1 motion around n/2 or 3/2n with a maximum amplitude w = f sin A. h uepericis max 

on the initial conditions because after substituting the expressior. (A.27) f o r  

IC we obtain 
- 

0 

2 "  - (3.56) A = sin w + (so + s ~ J ~ , ~ * ) ~ / ~ K ~  
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Case 2 - - 
u = u l  ' o r  (3.57) 0 

I n  t h i s  case we have 

o r  a f t e r  some manipulations 

* 
This  means t h a t  w 

This case  represents  the  boundary between o s c i l l a t o r y  and secular  motion of 

approaches 0 o r  n asymptot ical ly  a s  0 goes t o  i n f i n i t y .  

t h e  per igee,  The boundary depends on t h e  i n i t i a l  condi t ions.  We have 

I 2 *  - (3.60) A = s i n  w + (so + s1jl12 )/2wl = o 

which is poss ib le  only when t h e  i n i t i a l  values  

If (3.61) w = O  or II 

ana 

(3.62) 
- * 

- 0  so + s1Jl /2  

are assumed, This means t h a t  i n i t i a l l y  t h e  apse has t o  coincide with t h e  l i n e  

of t h e  nodes, and t h e  inc l ina t ion  is exac t ly  c r i t i c a l  at  l e a s t  t o  t h e  order  

kept i n  our ca lcu la t ions ,  because (3.62) is evident ly  t h e  expansion of t h e  

i n i t i a l  value of t h e  small d iv isor .  
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In this case we obtain 

where the modulus is 

and the amplitude is 

The use of elliptic functions gives 

where the modulus of tn is k2. 

The apse angle may assume any value in this case and the motion of the perigee 

is secular. For large To, k: becomes small and we may expand F(x k ) . This 
gives 

2’ 2 

- 1 k2* sin2x2 - O(k2 4 
* 

Since x2 + w 

perigee is secular with small additional oscillations. 

discussion of the behavior of the apsidal motion we have considered only the 

for large 7 (cf. (3.64~)) this shows that the motion of the 
0 

In the previous 
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2 solution of w *. A solution using all available information to O ( E  
0 

must make use of the composite expansion as obtained in (3.47). 

* ana i * in (3.47), we obtain the following result 
0112 01 

By substitution of i 

which is uniformly valid to O ( c  1 1 2 ) .  . 

After integration we have 

d< W .  - -  
112 - (3 .68)  0 - Qo = 1 

0 (1 + E gl)(Ko - K1 COS2c) 

The evaluation of this integral leads to elliptic functions and a highly 

transcendental relation between w and b. 
C 

3.7 I4otion of the node 

Equation (3.6b) for the node can be brought to the following form: , 

dR 2 3 2 2 4  2 2 2 - = - 
dQ 

[TU COS i sin $1 - E [T u (3cu - 7cu sin i sin e 
P P 

(3 .69)  

1 4 2 3 2 3 - - cos i sin $11 cos i sin 0 + O ( E  
2 

P 

Applying the composite expansions for u and i and substituting the known 

results ve obtain 
* 

* Note that ulI2 and ill* are zero. 
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- -  ai, 2 3 2 2 2  3 2 - - ~ [ T U ~  COS i a 4  sin 4 1  - t {TU: cos i sin Q oc oc P P 
( 3 - 7 0 )  

6 2 2 4 2  2 2 u0 [3cuO - 7cuosin i sin 4 + - sin Q - - u i COS iocsin i 
p2 0 1 oc oc 

3 

- %cos 4 i sin 2 41 cos 3 i sin 2 $1 + o ( E  512) 
oc oc P 

Since ail quantities on the right-hand side of (3.70) are airenuy Anom as 

functions of @I, the nocie could be founu by straightforward integration. 

IIouc.ver, for the sake of simplicity and a more systematic approach that 

avoicis the shifting of orders of magnitude due to integration of long-period 

terms, we will also solve (3.70) by the two-variable expansion procedure. 

- We use the slow variable Q = E ~ / ~ @  ana'assume the following expansion for t h e  

node : 

in f ron t  of the sumation in (3.71) is suggested because the The factor E -1/2 

leading term of the nodal velocity is of oraer E at all inclinations, which 

forces us to make the leading term of tkie node itself of' order E - ~ / ~  

insure that the derivative with resPect to 

to 

be of order. unity. 

Using the same procedure as for the other variables we obtain the following 

equations: 
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wnich implies  t n a t  

k a i n ,  w e  expand no i n  the  form: 

44 

Since t h e  right-hand s i d e  o f  equation (3.70) i s  O ( E ) ,  we obta in  

and (3.75) - = 0 a 4  
- = o  

a $  (3.74) 

implying t h a t  

(3.76) = nl = 0 

because t h e  in t eg ra t ion  cons tan ts  a r e  a l ready included i n  t h e  expansion ( 3 . 7 3 ) .  

Collect ing t h e  terms of order  E we obta in  
C 

t h e  expansion f o r  Ro ( t h e  expansion 

(3.77)) .  w e  r equ i r e  for iooundedness 

f o r  i oc has a l ready been s u b s t i t u t e d  i n  

The higher order  terms i n  t he  expansion of I! 0 and ioc are hence s h i f t e d  t o  

t h e  next o rde r .  In tegra t ion  of (3.78) g ives  



where L 

R is 

is a constant depending on the initial conditions. The solution for 0 L 

312 -* 

e 1 0 

312 p4 oo[- 5 sin20 + e 0 sin($ - wc) - 2 sin(@ + wc) 
1 5  Q = - T C O S  i (3.80) 

In order to make R bounded, we must s e t  2 * 
sin ioo[Fo 0112 4 5 4 -= 

00 
= - 4 cos i 

i 
5 -7 cos i sin i aQo1/2 

00 00 
(3.81) 

aB P 

- ( K O  - - K1 COS2W ) 1/2] 
C 

or 

A. 

w n e r e  L1,2 i s  an i n t e i ; r a t i o n  cons tan t  and u* is given by (3.551, ( 3 . 5 9 )  or 

(3.65) depending on the values 0:’ z 1‘ and L 
0 

2 - 
The terms of O ( E  ) depending on Q oniy are: 

+ (5/2p ) cos’ioo(4 - 5cos i oo)(iol/2 
2 R  /a7 + do + d cos2w 01 2 C 

sin i 
00 00. 

4 2 *)2 1; * 4  - (5/p )iol cos i 
* 

* 01/2 
The boundeuness requirempt on il 

ana i , that 
implies, after substituting for i 

512 

01 
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The integrat_ion of (3 .83)  y i e l d s  

w D + D2c0S2F. c o  
(3 .84)  112 dZ + L1 Go - w1c0s20 

where L 1 i s  an integratidn constant and t h e  i n t e g r a l  depends on the  values of 
- 
K -  and K , .  The evaluation of t h i s  i n t e g r a l  l e a d s  t o  e l l i p t i c  funct ions  of 

0 A 

-- 

t h e  f irst and second kind and w i l l  not be exh ib i t ed  here,  

46 



References 

Brouwer, D. 1959, Astron. J. 64, 9, 378. 

Cole, J. D., and Kevorkian, Z. 1963, "Uniformly Valld A s p a t o t i c  
Approximations f o r  Certain Non-Linear Di f fe ren t ia l  Equations, " 
Proceedings of the Internat ional  Symposium on Non-llnear E;echanics 
and Non-linear Different ia l  Eq'mtiOn6, Aug. 1961, Ed. by J. P. 
IaSalle and S. iefschetz,  (Academic Press, Xew York), p. W. 

Carfinkel, B. 1960, b t r o n .  J. 65, 10, 624. 

G;&bner, W., and Hofreiter, N. 1949, "Integral tafel ,  V. 1 (Springer- 
Verlag, Vienna and Innsbruck). . 

Izsak, I. G. 1963, "On t h e  C r i t i c a l  Xr,clination i n  Satell i te Theory," 
Proceediws of' the  F i r s t  In te rna t iona l  Sy~~posium on the Use of 
A r t i f i c i a l  Satellites for Geodesy, Apri l  1962, Ed. by G. Veis, 
(ilorth-Xolland Pub. Co., Amsterdam), p. 17. 

Iiori, G. 1960, Astron. J. 6J 5, 291. 

-3effries, 11. 1959, "The Earth," 4th Zit. (Cambridge Univ. Prese, 

Kaplun, S., and Lagerstran, P. A. 1957, J. Math. & Hech. 5 5 ,  585. , 

Kevorisian, J. 1962, "Tine Two-Variable Expansion Procedure f o r  t h e  

Cambridge), 1959. 

Approximate Solution of Certain Non-llnear Di f fe ren t ia l  Zquations, 
Lecture Notes of t h e  lN2 Summer I n s t i t u t e  in Dynamicel Astronomy 
(Yale University), 114 p. 

Lagerstran, P. A,, and Kevorkian, J. 1963, J. Nlecanique 3 2, 1s9. 

Mersman, W. A. 1962, '?he C r i t i c a l  Incl inat ion Problem In  Satell i te 
Orbit  Theory," XASA Technical iiep. R-llc8,  29 p. 

Struble, R. A. 1960, J. Math. Anal. Appl., & 3 & 4, 300. 

1961, Arch. Rational Mech. Anal., 5 2, 87. 

1962, J. Vath. & Mech., 10, 5, 691. 

Shi, Y. Y. 1963, "The Earth Potent ia l  fo r  Trajectory Calculations and 
AnaWic Studies," Douglas Aircraf t  Co., Inc. Rep. SI-42820, 19 p. 

Vinti, 3. 1959, J. Res. Nat. Bur.  Standards Sect. B, 2, 105. 



i;xcer,rii;c 

(Defini t ion of Constants) 

-riL-- 

i 14 e 2 2 
+ 42 eo2c) cos ioo + (-.- + u c  - - 

3 3 0  

+ ( - - + ~ c  1 + k e 2  - ~ e ~ c ) c o s i ~ ~  2 2 

+ ( 2 - g c  - 5 e t  + ? . e t )  2 1  cos 4 i j 

3 3 0  

2 00 

= - -  0 cos 7 loo sin ioo [ - - - ~c - 2 * 2  + ~ e : c  
e 

2$ 3 3 0  

+ ( - 1 O + u o c  - -  40 e . 1.20 eo 2 c)  cos 2 ioo 3 3 0  

4 + (30 - 126 c .- 15 e,' + 1.26 e t c )  cos ioo 3 
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(A. 8) 

(A.9) 

(A.10) 

8 
1 3  1 2 + 2 e ' c  

cos i 
B22 = 2$ O0 [ - 6 - p c - F e o  2 0  

2 
1 5 2 '  9 e 

0 cos loo sin ioo [ -  5 + 3c + (5 - 21c) cos ioo 1 

e 2 -  a 2 

c2 = 
r; FJ8 

'21 = 2 p8 cos ioo [ $ - 27c - (y - 261;) cos ioo 

4 + (30 - 2 5 2 ~ )  COS ioo ] 

*2 + (- 7 + E C  - - e *2 + 42 eo c )  c o s 2 1 0 ~  3 3 0  

"1 2 
+ (y - c + % e 0 w2 - e 0 c )  cos ioo- 
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c, cos i * 
O0 e *  [ + 1 , 3  1 *2 2 *2  12 ~ c - - ~ e ~  + ; ( - e  c (A.11) B2* = + 

2p8 O 2 0  

+ (- 5 + u c  + - 4 e *2 - 12 cos 2 *  ioo 

* 4 2 
+ (F - 

a2: = - - G 

2P8 

c - 8 eo$ + 21 e * c >  cos ioo I 
2 0  

* 
e * 2 2 *2 *2 * s i n  i i + - - U c - - e  + = e o  c 

00 3 3 0  
(A.12) 

00 

. 
70 *2 - 2 *  + (-  7 + U O ~  + 40 e *' - 20 eo c >  cos ioo 

3 0  

+ ( - $ + u c + 4 e 0  *2 - 3 6 e o  *2 c > c o s i  2 *  
00 

*2 + 3 e *2c) cos 4 *  ioo j 
+ ( F - F c . -  +? eo 2 0  

5 2 "  [ -  F; + 3c + (7 - 21c) cos i 1 
9 * 1  cos i * sin too 

2 00 J 
00 

(A.14) 

2 *  (7 - 26ic)  COB ioo 3 e *2 1 0 8  (A.15) C2; = + '4 - 8 cos io: [ 2 - 2 7 ~  - 
P 

4 *  
+ (30 - 252c) COS loo ] 

4 
COO loo 

(A.17) So = - (1 - 5 cos2i  ) 
00 2P4 

51 



(A. 18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

( ~ . 2 6 )  

s1 

s2 

50 

- 
0 

K 

K 
1 

cos'i 2 

2p4 
O0 sin i (2 - 15 cos i 1 

00 
t +  

00 

'd . 
cos 1 2 4 

O0 ( 6  - 63 cos loo + 90 cos io,) 4 = -  
P 

C C t  i - (-+(l - 5 cos2i 00 *) ] -3 2P 

El/2 = 

El = 

X 

* 
n1/2 - 

- + 3c + (g - 21c) cos2ioo*l 5 

I A. 

* I  - '4 -4 (1 - 3 cos i *) cos ioo 
eo*  so 2 

00 P 

I A 

1 * c22* * * 
2s1 c2 

+s 1 j 4 2  

+ - [ C21 + 7 B 2 ]COS 2w 

- 
h = f&* + 

2Kl 
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00 ' 5 e 2 + 6 3  2c> cos2i Bi 0 -l+- eo 
5 + ( -  6 + c - 

3 
2 

cos i 
Do = - do -,g 5 '7 00 (4 - 5 cos i )(z0 + 5:) 00 

s1 * 
I1 4 

+ 5 cos i s i n  i 
00 00 P 

cos ioos1n i 2 0 00 
3 3 cos i 

00 
D1 = + 5 - - ; - -[(4-5~0~i 00 ) -  s1 + 

+ c22 E1/2) 

cos 3 ioo 
D~ = - a 2 - -  5 [ c o s  i s i n  loo ( c ~ ~  2 s1p4 00 

2 - (4 - 5 cos loo) c2 I 
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